Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
1.
Food Funct ; 13(3): 1048-1061, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35050270

RESUMO

Circadian rhythm is essential to human physiological homeostasis and health. The oscillation of host circadian rhythm affects the composition and function of intestinal microbiota, meanwhile, the normal operation of host circadian rhythm depends on the diurnal changes of intestinal microbiota. The imbalance of intestinal micro-ecology or the disorder of host circadian rhythm may lead to psychiatric disorders, while the intervention of plant polysaccharides is a possible way to alleviate circadian rhythm disturbance and the related psychiatric diseases. This review discusses the interaction between host circadian rhythm and intestinal microbiota and their effects on psychiatric disorders, and proposes a possible strategy of plant polysaccharides to alleviate circadian rhythm disorders and related psychiatric disorders by regulating intestinal micro-ecology.


Assuntos
Transtornos Cronobiológicos/complicações , Transtornos Cronobiológicos/metabolismo , Microbioma Gastrointestinal/fisiologia , Transtornos Mentais/complicações , Transtornos Mentais/metabolismo , Plantas/metabolismo , Polissacarídeos/metabolismo , Animais , Transtornos Cronobiológicos/fisiopatologia , Ritmo Circadiano , Sinais (Psicologia) , Homeostase , Humanos , Intestinos/metabolismo , Intestinos/fisiopatologia , Transtornos Mentais/fisiopatologia , Camundongos , Polissacarídeos/fisiologia
2.
J Plant Physiol ; 267: 153546, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34736004

RESUMO

Codonopsis pilosula is a traditional Chinese herbal medicinal plant and contains various bioactive components, such as C. pilosula polysaccharides (CPPs) and lobetyolin (Lob). Hydrogen peroxide (H2O2) and nitric oxide (NO) are gaseous molecule and have been well known for their ability to relieve some adverse influences on plant from abiotic stress. Endophytic fungus is non-pathogenic plant-associated fungus that could play a significant role in improving plant tolerance by signal molecule. In this work, we determined how inoculation of Trichoderma strain RHTA01 with C. pilosula changed the plant's growth, metabolite accumulation, and related enzyme activity. Results demonstrated that application of Trichoderma strain RHTA01 significantly improved the growth of C. pilosula. Moreover, it noticeably decreased antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) activity in C. pilosula leaves, reduced the content of H2O2 and malondialdehyde (MDA), and weakened the peroxidation of cell membrane lipids, which reduced the damage of abiotic stress to C. pilosula. Research has shown that it had obvious effects on levels of nitrogen and carbon metabolic enzymes. For example, sucrose synthase (SS) and acid invertase (AI) levels in C. pilosula roots were nearly 1.43 and 1.7 times higher, respectively, than those in the control (CK) group. In addition, it was notable that the production of CPPs and Lob, the most significant secondary metabolites in C. pilosula, were influenced by Trichoderma strain RHTA01. The obtained results indicate that inoculating C. pilosula with Trichoderma stimulates the carbon and nitrogen metabolism of the plant, and helps to increase the content of CPPs and Lob in the root of the plant.


Assuntos
Carbono/metabolismo , Codonopsis , Nitrogênio/metabolismo , Poli-Inos/metabolismo , Trichoderma , Antioxidantes/metabolismo , Codonopsis/metabolismo , Codonopsis/microbiologia , Endófitos , Peróxido de Hidrogênio , Polissacarídeos/fisiologia
3.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073798

RESUMO

Type IIa receptor tyrosine phosphatases (RPTPs) play pivotal roles in neuronal network formation. It is emerging that the interactions of RPTPs with glycans, i.e., chondroitin sulfate (CS) and heparan sulfate (HS), are critical for their functions. We highlight here the significance of these interactions in axon regeneration and synaptogenesis. For example, PTPσ, a member of type IIa RPTPs, on axon terminals is monomerized and activated by the extracellular CS deposited in neural injuries, dephosphorylates cortactin, disrupts autophagy flux, and consequently inhibits axon regeneration. In contrast, HS induces PTPσ oligomerization, suppresses PTPσ phosphatase activity, and promotes axon regeneration. PTPσ also serves as an organizer of excitatory synapses. PTPσ and neurexin bind one another on presynapses and further bind to postsynaptic leucine-rich repeat transmembrane protein 4 (LRRTM4). Neurexin is now known as a heparan sulfate proteoglycan (HSPG), and its HS is essential for the binding between these three molecules. Another HSPG, glypican 4, binds to presynaptic PTPσ and postsynaptic LRRTM4 in an HS-dependent manner. Type IIa RPTPs are also involved in the formation of excitatory and inhibitory synapses by heterophilic binding to a variety of postsynaptic partners. We also discuss the important issue of possible mechanisms coordinating axon extension and synapse formation.


Assuntos
Axônios/metabolismo , Regeneração Nervosa , Polissacarídeos/fisiologia , Proteínas Tirosina Fosfatases Semelhantes a Receptores/fisiologia , Sinapses/metabolismo , Animais , Axônios/fisiologia , Humanos , Polissacarídeos/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Sinapses/fisiologia
4.
Front Immunol ; 12: 629979, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177884

RESUMO

Mammalian phagocytes can phagocytose (i.e. eat) other mammalian cells in the body if they display certain signals, and this phagocytosis plays fundamental roles in development, cell turnover, tissue homeostasis and disease prevention. To phagocytose the correct cells, phagocytes must discriminate which cells to eat using a 'phagocytic code' - a set of over 50 known phagocytic signals determining whether a cell is eaten or not - comprising find-me signals, eat-me signals, don't-eat-me signals and opsonins. Most opsonins require binding to eat-me signals - for example, the opsonins galectin-3, calreticulin and C1q bind asialoglycan eat-me signals on target cells - to induce phagocytosis. Some proteins act as 'self-opsonins', while others are 'negative opsonins' or 'phagocyte suppressants', inhibiting phagocytosis. We review known phagocytic signals here, both established and novel, and how they integrate to regulate phagocytosis of several mammalian targets - including excess cells in development, senescent and aged cells, infected cells, cancer cells, dead or dying cells, cell debris and neuronal synapses. Understanding the phagocytic code, and how it goes wrong, may enable novel therapies for multiple pathologies with too much or too little phagocytosis, such as: infectious disease, cancer, neurodegeneration, psychiatric disease, cardiovascular disease, ageing and auto-immune disease.


Assuntos
Fagocitose/fisiologia , Animais , Calreticulina/fisiologia , Senescência Celular , Humanos , Molécula 3 de Adesão Intercelular/fisiologia , Proteínas Opsonizantes/fisiologia , Fosfatidilserinas/fisiologia , Polissacarídeos/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia
5.
Biochem J ; 478(3): 597-617, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33600595

RESUMO

A sequence of interconnected events known as the metastatic cascade promotes tumor progression by regulating cellular and molecular interactions between tumor, stromal, endothelial, and immune cells both locally and systemically. Recently, a new concept has emerged to better describe this process by defining four attributes that metastatic cells should undergo. Every individual hallmark represents a unique trait of a metastatic cell that impacts directly in the outcome of the metastasis process. These critical features, known as the hallmarks of metastasis, include motility and invasion, modulation of the microenvironment, cell plasticity and colonization. They are hierarchically regulated at different levels by several factors, including galectins, a highly conserved family of ß-galactoside-binding proteins abundantly expressed in tumor microenvironments and sites of metastasis. In this review, we discuss the role of galectins in modulating each hallmark of metastasis, highlighting novel therapeutic opportunities for treating the metastatic disease.


Assuntos
Galectinas/fisiologia , Metástase Neoplásica/prevenção & controle , Proteínas de Neoplasias/fisiologia , Imunidade Adaptativa , Animais , Anticorpos Neutralizantes/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Carboidratos/farmacologia , Movimento Celular , Ensaios Clínicos Fase I como Assunto , Transição Epitelial-Mesenquimal/fisiologia , Matriz Extracelular/metabolismo , Galectinas/antagonistas & inibidores , Humanos , Imunidade Inata , Camundongos , Invasividade Neoplásica , Metástase Neoplásica/imunologia , Metástase Neoplásica/fisiopatologia , Proteínas de Neoplasias/antagonistas & inibidores , Células Neoplásicas Circulantes , Neovascularização Patológica/metabolismo , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , Polissacarídeos/fisiologia , RNA Interferente Pequeno/farmacologia , Células Estromais/metabolismo , Microambiente Tumoral/fisiologia
6.
Mar Drugs ; 19(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499103

RESUMO

Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Apirase/antagonistas & inibidores , Polissacarídeos/fisiologia , Pirofosfatases/antagonistas & inibidores , Alga Marinha , Ésteres do Ácido Sulfúrico/farmacologia , Trifosfato de Adenosina/metabolismo , Apirase/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Hidrólise/efeitos dos fármacos , Diester Fosfórico Hidrolases/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Pirofosfatases/metabolismo , Alga Marinha/química , Alga Marinha/isolamento & purificação , Ésteres do Ácido Sulfúrico/química , Ésteres do Ácido Sulfúrico/isolamento & purificação
7.
Cell Host Microbe ; 29(1): 132-144.e3, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33120114

RESUMO

Glycans, the most diverse biopolymer, are shaped by evolutionary pressures stemming from host-microbe interactions. Here, we present machine learning and bioinformatics methods to leverage the evolutionary information present in glycans to gain insights into how pathogens and commensals interact with hosts. By using techniques from natural language processing, we develop deep-learning models for glycans that are trained on a curated dataset of 19,299 unique glycans and can be used to study and predict glycan functions. We show that these models can be utilized to predict glycan immunogenicity and the pathogenicity of bacterial strains, as well as investigate glycan-mediated immune evasion via molecular mimicry. We also develop glycan-alignment methods and use these to analyze virulence-determining glycan motifs in the capsular polysaccharides of bacterial pathogens. These resources enable one to identify and study glycan motifs involved in immunogenicity, pathogenicity, molecular mimicry, and immune evasion, expanding our understanding of host-microbe interactions.


Assuntos
Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Aprendizado Profundo , Interações entre Hospedeiro e Microrganismos , Polissacarídeos Bacterianos , Polissacarídeos , Animais , Cápsulas Bacterianas/química , Cápsulas Bacterianas/fisiologia , Biologia Computacional , Humanos , Evasão da Resposta Imune , Processamento de Linguagem Natural , Polissacarídeos/química , Polissacarídeos/imunologia , Polissacarídeos/fisiologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/fisiologia , Simbiose , Virulência
8.
Proc Natl Acad Sci U S A ; 117(44): 27329-27338, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067390

RESUMO

Galectin-3 is a glycan-binding protein (GBP) that binds ß-galactoside glycan structures to orchestrate a variety of important biological events, including the activation of hepatic stellate cells and regulation of immune responses. While the requisite glycan epitopes needed to bind galectin-3 have long been elucidated, the cellular glycoproteins that bear these glycan signatures remain unknown. Given the importance of the three-dimensional (3D) arrangement of glycans in dictating GBP interactions, strategies that allow the identification of GBP receptors in live cells, where the native glycan presentation and glycoprotein expression are preserved, have significant advantages over static and artificial systems. Here we describe the integration of a proximity labeling method and quantitative mass spectrometry to map the glycan and glycoprotein interactors for galectin-3 in live human hepatic stellate cells and peripheral blood mononuclear cells. Understanding the identity of the glycoproteins and defining the structures of the glycans will empower efforts to design and develop selective therapeutics to mitigate galectin-3-mediated biological events.


Assuntos
Galectina 3/metabolismo , Polissacarídeos/metabolismo , Técnicas de Cultura de Células , Galectina 3/fisiologia , Galectinas/química , Glicoproteínas/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Polissacarídeos/fisiologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Transdução de Sinais
9.
Commun Biol ; 3(1): 224, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385340

RESUMO

Plants respond to herbivory by perceiving herbivore danger signal(s) (HDS(s)), including "elicitors", that are present in herbivores' oral secretions (OS) and act to induce defense responses. However, little is known about HDS-specific molecules and intracellular signaling. Here we explored soybean receptor-like kinases (RLKs) as candidates that might mediate HDS-associated RLKs' (HAKs') actions in leaves in response to OS extracted from larvae of a generalist herbivore, Spodoptera litura. Fractionation of OS yielded Frα, which consisted of polysaccharides. The GmHAKs composed of their respective homomultimers scarcely interacted with Frα. Moreover, Arabidopsis HAK1 homomultimers interacted with cytoplasmic signaling molecule PBL27, resulting in herbivory resistance, in an ethylene-dependent manner. Altogether, our findings suggest that HAKs are herbivore-specific RLKs mediating HDS-transmitting, intracellular signaling through interaction with PBL27 and the subsequent ethylene signaling for plant defense responses in host plants.


Assuntos
Arabidopsis/genética , Defesa das Plantas contra Herbivoria/genética , Proteínas de Plantas/genética , Polissacarídeos/fisiologia , Spodoptera/fisiologia , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cadeia Alimentar , Herbivoria , Larva/crescimento & desenvolvimento , Larva/fisiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Spodoptera/crescimento & desenvolvimento
10.
Microb Ecol ; 80(1): 223-236, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31982929

RESUMO

The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.


Assuntos
Antozoários/microbiologia , Dinoflagelados/fisiologia , Polissacarídeos/fisiologia , Simbiose , Animais , Interações entre Hospedeiro e Microrganismos , Polissacarídeos/biossíntese , Polissacarídeos/química
11.
Adv Food Nutr Res ; 90: 135-181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31445595

RESUMO

Commercial trends based of the emergence of plant-based functional foods lead to investigate the structure-function relationship of their main bioactive constituents and their interactions in the food matrix and throughout the gastro-intestinal tract. Among these bioactive constituents, dietary polysaccharides and polyphenols have shown to interact at the molecular level and these interactions may have consequences on the polysaccharides physical and nutritional properties. The methods of investigation and mechanisms of interactions between polysaccharides and polyphenols are reviewed in light of their respective technological and nutritional functionalities. Finally, the potential impact of the co-occurrence or co-ingestion of polyphenols and polysaccharides on the technological and nutritional functionality of the polysaccharides are investigated.


Assuntos
Alimento Funcional/análise , Fenóis/química , Polissacarídeos/química , Polissacarídeos/fisiologia , Digestão , Fermentação , Tecnologia de Alimentos , Microbioma Gastrointestinal/fisiologia , Nível de Saúde , Humanos , Valor Nutritivo , Fenóis/análise , Polifenóis/análise , Polifenóis/química , Polissacarídeos/análise , Prebióticos
12.
Sci Rep ; 9(1): 9871, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285477

RESUMO

This study investigated the repair effects of three Astragalus polysaccharides (APSs) with different molecular weights (Mws) on injured human renal proximal tubular epithelial (HK-2) cells to reveal the effect of Mw of polysaccharide on cell repair. A damage model was established by injuring HK-2 cells with 2.6 mM oxalate, and APS0, APS1, and APS2 with Mw of 11.03, 4.72, and 2.61 KDa were used to repair the damaged cells. After repair by APSs, the morphology of damaged HK-2 cells gradually returned to normal, the destruction of intercellular junctions recovered, intracellular reactive oxygen species production amount decreased, and their mitochondrial membrane potential increased. In addition, the cell cycle progression gradually normalized, lysosome integrity increased, and cell apoptotic rates obviously declined in the repaired cells. All three APSs could promote the expression of Keap1, Nrf2, SOD1, and CAT. In addition, the expression levels of inflammation markers containing MCP-1 and IL-6 decreased after APS repair. We deduced that APSs exert their repair function by activating the Nrf2-Keap1 signaling pathway and inhibiting inflammation. Among the APSs, APS1 with a moderate Mw provided the strongest repair effect. APSs may have a preventive effect on kidney stones.


Assuntos
Astrágalo/química , Oxirredução/efeitos dos fármacos , Polissacarídeos/fisiologia , Antioxidantes/fisiologia , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Peso Molecular , Oxalatos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Future Microbiol ; 14: 867-884, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31340660

RESUMO

Aim:Cryptococcus neoformans is the major agent of cryptococcosis. The main virulence factor is the polysaccharide (PS) capsule. Changes in cryptococcal PS properties have been poorly elucidated. Materials & methods: We analyzed the mechanical properties of secreted PS and intact capsules, using dynamic light scattering and optical tweezers. Results: Storage and loss moduli showed that secreted PS behaves as a viscoelastic liquid, while capsular PS behaves as a viscoelastic solid. The secreted PS remains as a viscoelastic fluid at different temperatures with thermal hysteresis after 85°C. Antibody binding altered the viscoelastic behavior of both secreted and capsular PS. Conclusion: Deciphering the mechanical aspects of these structures could reveal features that may have consequences in novel therapies against cryptococcosis.


Assuntos
Anticorpos Antifúngicos/metabolismo , Cryptococcus neoformans/química , Polissacarídeos/fisiologia , Temperatura , Fatores de Virulência/fisiologia , Anticorpos Antifúngicos/imunologia , Cápsulas Fúngicas/química , Cápsulas Fúngicas/imunologia , Cápsulas Fúngicas/fisiologia , Pinças Ópticas , Tamanho da Partícula , Polissacarídeos/química , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Reologia , Fatores de Virulência/química , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo , Substâncias Viscoelásticas
14.
PLoS Biol ; 17(6): e3000318, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31211781

RESUMO

Cell-to-cell transmission of toxic forms of α-Synuclein (αS) is thought to underlie disease progression in Parkinson disease. αS in humans is constitutively N-terminally acetylated (αSacetyl), although the impact of this modification is relatively unexplored. Here, we report that αSacetyl is more effective at inducing intracellular aggregation in primary neurons than unmodified αS (αSun). We identify complex N-linked glycans as binding partners for αSacetyl and demonstrate that cellular internalization of αSacetyl is reduced significantly upon cleavage of extracellular N-linked glycans, but not other carbohydrates. We verify binding of αSacetyl to N-linked glycans in vitro, using both isolated glycans and cell-derived proteoliposomes. Finally, we identify neurexin 1ß, a neuronal glycoprotein, as capable of driving glycan-dependent uptake of αSacetyl. Importantly, our results are specific to αSacetyl because αSun does not demonstrate sensitivity for N-linked glycans in any of our assays. Our study identifies extracellular N-linked glycans-and the glycoprotein neurexin 1ß specifically-as key modulators of neuronal uptake of αSacetyl, drawing attention to the potential therapeutic value of αSacetyl-glycan interactions.


Assuntos
Polissacarídeos/metabolismo , alfa-Sinucleína/metabolismo , Acetilação , Animais , Transporte Biológico , Linhagem Celular Tumoral , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Polissacarídeos/fisiologia , Cultura Primária de Células
15.
Poult Sci ; 98(11): 5571-5581, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31198939

RESUMO

This study evaluated the effects of a combination of xylanase, amylase, and protease (XAP), with probiotics (3 Bacillus spp.) supplementation on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients in Cobb 500 broilers from 0 to 21 d. A completely randomized 2 × 4 factorial design (2 levels of fiber; 4 types of supplements) with 8 replicate cages (6 birds/cage) was used. Each low and high-fiber diet contained 500 FTU/kg Buttiauxella sp. phytase and was supplemented with: (a) none (control), (b) XAP (2,000 U xylanase + 200 U amylase + 4,000 U protease/kg diet), (c) probiotics (75,000 CFU/g of Bacillus spp.), or (d) XAP + probiotics. High fiber decreased (P < 0.05) nitrogen-corrected apparent metabolizable energy (AMEn), AID of all amino acids (AA), AID and ATTD of dry matter (DM), crude protein (CP), starch, and gross energy (GE). High fiber increased (P < 0.01) the flow of total non-starch polysaccharides (NSP) in both ileum and total tract. The XAP + probiotics increased (P < 0.01) AMEn as well as AID and ATTD of DM, CP, GE, starch, while alone, XAP yielded similar improvement except for DM compared with control. The supplemental XAP alone improved (P < 0.01) the digestibility of most of the AAs compared with control. Moreover, XAP + probiotics increased (P < 0.05) AID of all AA except arginine and serine compared with control. A fiber × supplements interaction (P < 0.05) was found for AID of histidine and threonine, and their digestibility in high-fiber diet was improved to a level comparable to low-fiber diet by XAP + probiotics. The flow of NSP in XAP group was 5 to 6% lower than in control while NSP flow in XAP + probiotic group was further 4% lower than that of XAP group (P < 0.01). The results infer that the combination of XAP and probiotics can effectively optimize the nutrient digestibility in broilers fed both low and high-fiber diets.


Assuntos
Ração Animal/análise , Galinhas/fisiologia , Fibras na Dieta/administração & dosagem , Digestão/efeitos dos fármacos , Probióticos/farmacologia , Aminoácidos/fisiologia , Amilases/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Trato Gastrointestinal/fisiologia , Íleo/fisiologia , Nutrientes/fisiologia , Peptídeo Hidrolases/administração & dosagem , Polissacarídeos/fisiologia , Probióticos/administração & dosagem , Distribuição Aleatória , Xilosidases/administração & dosagem
16.
Plant Cell Environ ; 42(8): 2458-2471, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980422

RESUMO

Plants have evolved a multitude of adaptations to survive extreme conditions. Succulent plants have the capacity to tolerate periodically dry environments, due to their ability to retain water in a specialized tissue, termed hydrenchyma. Cell wall polysaccharides are important components of water storage in hydrenchyma cells. However, the role of the cell wall and its polysaccharide composition in relation to drought resistance of succulent plants are unknown. We investigate the drought response of leaf-succulent Aloe (Asphodelaceae) species using a combination of histological microscopy, quantification of water content, and comprehensive microarray polymer profiling. We observed a previously unreported mode of polysaccharide and cell wall structural dynamics triggered by water shortage. Microscopical analysis of the hydrenchyma cell walls revealed highly regular folding patterns indicative of predetermined cell wall mechanics in the remobilization of stored water and the possible role of homogalacturonan in this process. The in situ distribution of mannans in distinct intracellular compartments during drought, for storage, and apparent upregulation of pectins, imparting flexibility to the cell wall, facilitate elaborate cell wall folding during drought stress. We conclude that cell wall polysaccharide composition plays an important role in water storage and drought response in Aloe.


Assuntos
Aloe/fisiologia , Mananas/metabolismo , Água/metabolismo , Aloe/citologia , Aloe/metabolismo , Parede Celular/metabolismo , Mananas/análise , Polissacarídeos/metabolismo , Polissacarídeos/fisiologia , Estresse Fisiológico
17.
J Mol Evol ; 86(9): 598-610, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30456440

RESUMO

Life as we know it requires three basic types of polymers: polypeptide, polynucleotide, and polysaccharide. Here we evaluate both universal and idiosyncratic characteristics of these biopolymers. We incorporate this information into a model that explains much about their origins, selection, and early evolution. We observe that all three biopolymer types are pre-organized, conditionally self-complementary, chemically unstable in aqueous media yet persistent because of kinetic trapping, with chiral monomers and directional chains. All three biopolymers are synthesized by dehydration reactions that are catalyzed by molecular motors driven by hydrolysis of phosphorylated nucleosides. All three biopolymers can access specific states that protect against hydrolysis. These protected states are folded, using self-complementary interactions among recurrent folding elements within a given biopolymer, or assembled, in associations between the same or different biopolymer types. Self-association in a hydrolytic environment achieves self-preservation. Heterogeneous association achieves partner-preservation. These universal properties support a model in which life's polymers emerged simultaneously and co-evolved in a common hydrolytic milieu where molecular persistence depended on folding and assembly. We believe that an understanding of the structure, function, and origins of any given type of biopolymer requires the context of other biopolymers.


Assuntos
Biopolímeros/biossíntese , Biopolímeros/metabolismo , Biopolímeros/fisiologia , Animais , Catálise , Humanos , Peptídeos/metabolismo , Peptídeos/fisiologia , Polímeros , Polinucleotídeos/biossíntese , Polinucleotídeos/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/metabolismo , Polissacarídeos/fisiologia , Dobramento de Proteína , Dobramento de RNA/fisiologia
18.
FEBS J ; 285(9): 1611-1634, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29542865

RESUMO

The rapidly evolvable influenza A virus has caused pandemics linked to millions of deaths in the past century. Influenza A viruses are categorized by H (hemagglutinin; HA) and N (neuraminidase; NA) proteins expressed on the viral envelope surface. Analyses of past pandemics suggest that the HA gene segment comes from a nonhuman virus, which is then introduced into an immunologically naïve human population with potentially devastating consequences. As a prerequisite for infection, the nonhuman HA molecules of H1-H16 viruses must be able to bind to specific sialyl receptors on the host cell surface along the human respiratory tract. Thus, additional insight into the structures of host cell glycans and how different HAs interact with different glycans might provide new insight into the mechanisms underlying sustained infection and transmission in humans. In this work, we identified the sialyl N-glycans found in normal human alveoli and characterized the influenza viruses that preferentially bound to these different structures. We also determined the amino acid changes in HA that were linked to a switch of receptor-binding preference from nonhuman to pandemic, as well as pandemic to seasonal. Our data provide insight into why seasonal viruses are associated with reduced alveolar infection and damage and suggest new considerations for designing anti-HA vaccines and drugs. The results provide a better understanding of viral tropism and pathogenesis in humans that will be important for prediction and surveillance of zoonotic, pandemic, and epidemic influenza outbreaks. DATABASE: The novel hemagglutinin nucleotide sequences reported here were deposited in GISAID under the accession numbers of EPI685738 for A/Yamaguchi/20/2006(H1N1) and EPI685740 for A/Kitakyushu/10/2006(H1N1).


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A/fisiologia , Influenza Aviária/virologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Polissacarídeos/fisiologia , Doenças das Aves Domésticas/virologia , Alvéolos Pulmonares/patologia , Receptores Virais/química , Tropismo Viral/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Ligação Competitiva , Sequência de Carboidratos , Surtos de Doenças , Cães , Patos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/química , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Influenza Aviária/patologia , Influenza Humana/epidemiologia , Influenza Humana/patologia , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/patologia , Pandemias , Polissacarídeos/química , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/patologia , Ligação Proteica , Alvéolos Pulmonares/química , Alvéolos Pulmonares/virologia , RNA Viral/genética , Estações do Ano , Ácidos Siálicos/química , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/patologia , Doenças dos Suínos/virologia , Replicação Viral , Zoonoses
19.
Mol Immunol ; 94: 54-60, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29268168

RESUMO

The binding strength between IgG and FcγR is influenced by the composition of the N-linked glycan at position N297 in the Fc-domain of IgG. Particularly, afucosylation increases the binding affinity of human IgG1 to human FcγRIIIa up to ∼20 fold, and additional galactosylation of the afucosylated IgG increases the affinity up to ∼40 fold. The increase in affinity for afucosylated IgG has previously been shown to depend on direct carbohydrate-carbohydrate interactions between the IgG-Fc glycan with an N-linked glycan at position 162 unique to hFcγRIIIa and hFcγRIIIb. Here we report that the N162 glycosylation site is also found in the orthologous mouse FcγR, mFcγRIV. The N162-glycan in mFcγRIV was also responsible for enhancing the binding to mouse IgG with reduced fucose similar to hFcγRIIIa. However, unlike hFcγRIIIa, mFcγRIV did not bind more avidly to IgG with increased galactose and reduced fucose. Overall, these results suggest the N162-glycan in the human FcγRIII family and its orthologous mouse FcγRIV to be functionally conserved.


Assuntos
Reações Antígeno-Anticorpo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Polissacarídeos/fisiologia , Receptores de IgG/metabolismo , Animais , Especificidade de Anticorpos , Sequência de Carboidratos/fisiologia , Células Cultivadas , Sequência Conservada , Fucose/metabolismo , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Camundongos , Polissacarídeos/imunologia , Receptores de IgG/imunologia , Especificidade da Espécie
20.
Plant Biol (Stuttg) ; 20(2): 223-237, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29247575

RESUMO

The distribution of homogalacturonans (HGAs) displaying different degrees of esterification as well as of callose was examined in cell walls of mature pavement cells in two angiosperm and two fern species. We investigated whether local cell wall matrix differentiation may enable pavement cells to respond to mechanical tension forces by transiently altering their shape. HGA epitopes, identified with 2F4, JIM5 and JIM7 antibodies, and callose were immunolocalised in hand-made or semithin leaf sections. Callose was also stained with aniline blue. The structure of pavement cells was studied with light and transmission electron microscopy (TEM). In all species examined, pavement cells displayed wavy anticlinal cell walls, but the waviness pattern differed between angiosperms and ferns. The angiosperm pavement cells were tightly interconnected throughout their whole depth, while in ferns they were interconnected only close to the external periclinal cell wall and intercellular spaces were developed between them close to the mesophyll. Although the HGA epitopes examined were located along the whole cell wall surface, the 2F4- and JIM5- epitopes were especially localised at cell lobe tips. In fern pavement cells, the contact sites were impregnated with callose and JIM5-HGA epitopes. When tension forces were applied on leaf regions, the pavement cells elongated along the stretching axis, due to a decrease in waviness of anticlinal cell walls. After removal of tension forces, the original cell shape was resumed. The presented data support that HGA epitopes make the anticlinal pavement cell walls flexible, in order to reversibly alter their shape. Furthermore, callose seems to offer stability to cell contacts between pavement cells, as already suggested in photosynthetic mesophyll cells.


Assuntos
Forma Celular/fisiologia , Parede Celular/fisiologia , Polissacarídeos/fisiologia , Parede Celular/ultraestrutura , Gleiquênias/fisiologia , Gleiquênias/ultraestrutura , Glucanos/metabolismo , Microscopia Eletrônica de Transmissão , Pectinas/metabolismo , Folhas de Planta/fisiologia , Vigna/fisiologia , Vigna/ultraestrutura , Zea mays/fisiologia , Zea mays/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...